Chapter 1: Real numbers
Pythagorean theorem, to find:

- Hypotenuse:

- Leg: $\quad a=\sqrt{\left(c^{2}-b^{2}\right)}$
21

ϵ : element of
\subseteq : subset of
$N \subseteq Z \subseteq Q \subseteq R$
Laws of exponents:
$\mathrm{A}^{0}=1 \quad \mathrm{a}^{1}=\mathrm{a}$

Changing repeating decimal to fraction:
Ex: $0.1 \overline{6} \rightarrow 1 . \overline{6}=1 \frac{6}{9}=1 \frac{2}{3}=\frac{5}{3} \vec{~} \rightarrow \frac{5}{30}=\frac{1}{6}$

	Law	
1.	$a^{m} a^{n}=a^{m+n}$	Example
2.	$\frac{a^{m}}{a^{n}}=a^{m-n} \quad$ if $\mathrm{m}>\mathrm{n}$	$\frac{x^{2} x^{3}=x^{5}}{x^{2}}=x^{4}$
	$=\frac{1}{a^{n-m}} \quad$ if $\mathrm{n}>\mathrm{m}$	$\frac{x^{2}}{x^{6}}=\frac{1}{x^{4}}$
3.	$\left(a^{m}\right)^{n}=a^{m n}$	$\left(x^{2}\right)^{3}=x^{6}$
4.	$(a b)^{n}=a^{n} b^{n}$	$(2 x)^{3}=8 x^{3}$
5.	$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$	$\left(\frac{2}{x}\right)^{3}=\frac{8}{x^{3}}$
6.	$a^{-n}=\frac{1}{a^{n}}$	$x^{-3}=\frac{1}{x^{3}}$
7.	$a^{1 / n}=\sqrt[n]{a}$	$x^{1 / 3}=\sqrt[3]{x}$

- Scientific notation $a \times 10^{n}$
$(1 \leq a<10)$ Ex:
$\frac{\text { Ex. }}{\left(2.3 \times 10^{-3}\right)}\left(7.9 \times 10^{5}\right)$
$=(2.3)(7.9) \times\left(10^{-3+5}\right)$
$=18.17 \times 10^{2}$
$=1.817 \times 10 \times 10^{2}$
$=1.817 \times 10^{3}$

Chapter 3: Equations \& Inequalities				
	Equations	Inequalities/ interval solution EFF		
1	$\begin{array}{r} x+3=7 \\ x \quad=4 \end{array}$	$\begin{aligned} & x+3<7 \\ & x \quad<4 \end{aligned}$		$\stackrel{\text { Interval: }]^{-\infty, 4[}}{4}$
2	$\begin{array}{ll} 2 x+4 & =10 \\ 2 x & =6 \\ x & =3 \\ \hline \end{array}$	$\begin{array}{ll} & 2 x+4 \\ 2 x & \geq 6 \\ 2 x & \geq 3 \\ \hline \end{array}$		$\begin{aligned} & \text { Interval: } \quad[3, \infty[1 \\ & \hline 3 \end{aligned}$
3		$\begin{aligned} & 5 x+25>-3 x-23 \\ & 8 x+25>-23 \\ & 8 x \quad>-48 \end{aligned}$		$\xrightarrow[-6]{\text { Interval: } \left.{ }^{\text {]-6, }[}\right]}$
4	$\begin{aligned} & 6(x-2)=-4(2 x+1) \\ & 6 x-12= \\ & 14 x-12=-4 \\ & 14 x \quad=-8 \\ & x \quad=\frac{8}{14}=\frac{4}{7} \\ & x \end{aligned}$	$\begin{aligned} & 6(x-2) \leq-4(2 x+1) \\ & 6 x-12 \leq-8 x-4 \\ & 14 x-12 \leq-4 \\ & 14 x \quad \leq 8 \\ & x \quad \leq \frac{8}{14}=\frac{4}{7} \\ & \hline \end{aligned}$		$\xrightarrow[4]{\text { Interval: }}{ }_{4}^{-\infty, \frac{4}{7}}$
5	$\begin{aligned} & \frac{3 x+5}{4}=\frac{\frac{4 x+10}{2}+1}{2}+1 \\ & \frac{3 x+5}{4}=\frac{2(4 x+10)}{4}+\frac{4}{4} \\ & 3 \mathrm{x}+5 \\ & -5 \mathrm{x}+5 \\ & -54 \\ & -5 \mathrm{x} \\ & =24 \\ & \mathrm{x} \quad=19 \\ & x \quad=-\frac{19}{5} \end{aligned}$	$\begin{aligned} & \frac{3 x+5}{4} \leq \frac{4 x+10}{2}+1 \\ & \frac{3 x+5}{4} \leq \frac{2(4 x+10)}{4}+\frac{4}{4} \\ & 3 x+5 \leq 8 x+20+4 \\ & -5 x+5 \leq 24 \\ & -5 x \quad \leq 19 \\ & x \quad \leq-\frac{19}{5} \end{aligned}$		Exception: when you divide by a negative, flip the sign.
More examples:				
$\begin{aligned} -5(2 x+1)+3(x-2) & =2(4 x-1)-3(2 x-3) \\ -10 x-5+3 x-6 & =8 x-2-6 x+9 \\ -7 x-11 & =2 x+7 \\ -9 x-11 & =7 \\ -9 x & =18 \\ x & =-2 \end{aligned}$			$\begin{aligned} 5(2 x+1)+3(x-2) & \geq 2(4 x-1)-3(2 x-3) \\ -10 x-5+3 x-6 & \geq 8 x-2-6 x+9 \\ -7 x-11 & \geq 2 x+7 \\ -9 x-11 & \geq 7 \\ -9 x & \geq 18 \\ x & \leq-2 \end{aligned}$	

$80<4 \mathrm{x}+20<100$
$60<4 x<80$
$15<x<20$
Interval solutions is:]15,20[
$15 \quad 20$

Chapter 2: Algebraic Expressions

- Definitions:
1.Monomial: 1 term either variable, constant, or product
2.Polynomial: more than one term separated by +/- ; all terms have variables with natural exponents
(a)Binomial- 2 terms
(b) trinomial- 3 terms

3. Coefficient: is the number preceding the variable(s)
4.Like terms: have identical variables with identical exponents
4. Degree: (a) of a monomial: sum of exponents of all variables
(b) of a polynomial: the degree of the term with highest degree
5. Zero of a polynomial: is the value of the variable that makes the polynomial = 0
6. Simplify: is to collect (add or subtract) all like terms to have fewer terms 8. Evaluate: is to replace the variable with a given value \& follow BEDMAS

- Adding/Subtracting Polynomials: coefficients only, exponents don't change \begin{tabular}{|l|l|}
\hline \hline Ex 1: $\left(2 x^{2}+5 x+8\right)+\left(x^{2}-4 x+5\right)$ \& Ex 2: $\left(2 x^{2}+5 x+8\right)-\left(x^{2}-4 x+5\right)$

\hline

$=3 x^{2}+x+13$ \& $=x^{2}+9 x+3$
\end{tabular}

- Multiplying Polynomials:

Case 1 Distributive	$\begin{aligned} & \text { Case } 2 \\ & \text { FOIL } \end{aligned}$	
$\text { Ex: } \begin{aligned} & 3 x(4 x+2) \\ = & 12 x^{2}+6 x \end{aligned}$	$\begin{aligned} & \text { Ex: }(3 x+2)(4 x-5) \\ & \text { F } \quad 0 \quad \text { । L } \\ & =12 x^{2}-15 x+8 x-10 \\ & =12 x^{2}-7 x-10 \end{aligned}$	$\begin{aligned} & \text { Ex: }(3 x+2)^{2} \\ & =(3 x+2)(3 x+2) \\ & =9 x^{2}+6 x+6 x+4 \\ & =9 x^{2}+12 x+4 \end{aligned}$

- Dividing Polynomials: Divide each term by the monomial

$$
\text { Ex: } \frac{20 x y^{5}-15 x y^{2}+30 x^{2} y^{4}+5 x y}{5 x y}
$$

- Greatest Common Factor

1. Find the GCF for the coefficients and each variable (the variables with the smallest exponents)
2. To get the second factor, divide the polynomial by your GCF

Ex: $\quad 18 x^{4} y+12 x^{3} y^{2}$

$$
\begin{aligned}
& =\left(6 x^{3} y\right)\left(\frac{18 x^{4} y+12 x^{3} y^{2}}{6 x^{2} y}\right) \\
& =\left(6 x^{3} y\right)(3 x+2 y)
\end{aligned}
$$

Chapter 4: Functions

A relation:

on: $\left.\begin{array}{l}A \\ B \\ C\end{array}\right)$	$\left(\begin{array}{r} 1 \\ 2 \\ 3 \end{array}\right)$
Input	Output
Source	Target
Antecedent	Image
Independent	Dependant
x-value	y-value
Domain	Range

Modes of representation

It is a function if there is at most one y-value for every x-value.

VLT: (Vertical line test) in a function the VLT touches the graph at most once.

Notation: $f(x)=y$

1) Written description EX: Repairman charges $\$ 30$ per hour plus $\$ 60$ for travel.
2) Rule/Equation: $\mathrm{f}(\mathrm{x})=30 \mathrm{x}+60$; indep. var. (x) time ; dep var. (y) cost
3) Table of values: (TOV)

Rate of change:
ROC $=\frac{\text { rise }}{\text { run }}$ (given graph)
$\}=\frac{\Delta y}{\Delta x}$ (given TOV) EX: $\frac{\Delta y}{\Delta x}=\frac{30}{1}=30$
4) Graph:

Types of functions:

Rational:
$\mathrm{y}=\frac{c}{x}$ $\mathrm{x} \cdot \mathrm{y}=\mathrm{c}$ Constant product

Finding the rule/equation of the line: $\quad y=a x+b$

EX:	
X	Y
5	280
8	406

Step 1: find a (ROC)

$\mathrm{a}=\frac{406-280}{8-5}=\frac{126}{3}=42 \$ / \mathrm{hr}$
Step 2: find b (initial value)
$\mathbf{b}=\mathbf{y}_{1}-\mathbf{a x}$
$=280-(42)(5)=70 \$$
Therefore: $f(x)=y=42 x+70$

Solving a system of equations:

$\left\{y_{1}=2 x+5\right.$
$y_{1}=y_{2}$
$x+5=x+8$

$\begin{array}{c}y_{1}=2(3)+5 \\ =11\end{array}$	$\begin{array}{l}y_{2}=(3)+8 \\ =11\end{array}$
$=3$ the $\mathrm{y}=11$ for both equations	

A prism: has only 2 parallel and congruent bases, its named after the base, its height is the distance between the bases; can be generated by translating the base
A cylinder: has only 2 parallel and congruent disks, its height is the distance between the bases, can be generated by translating a disk, or rotating a rectangle along one of its edges.
A Pyramid: has 1 base and an apex, its named after the base, it has a height and a slant height $\quad \mathrm{s}^{2}=\mathrm{h}^{2}+(\mathrm{b} / 2)^{2} \quad$ or $\quad s=\sqrt{\left(\mathrm{h}^{2}+(\mathrm{b} / 2)^{2}\right)}$
A cone: has one circle base and an apex, has a height and a slant height, can be generated by rotating a right triangle around its height. $s^{2}=h^{2}+r^{2}$
A sphere: can be generated by rotating a semicircle around its diameter.

Chapter 7: Similar solids

Similar solids have a ratio k between them (each dimension of one is k times bigger than the other) it is easier to keep k as a fraction instead of a decimal. 1D: ratio of sides $k=\frac{s^{\prime}}{s}=\frac{h^{\prime}}{h}=\frac{b^{\prime}}{b}=\frac{l^{\prime}}{l}=\frac{r^{\prime}}{r}$ 2D: ratio of areas $k^{2}=\frac{A^{\prime}}{A}$ 3D: ratio of volumes $k^{3}=\frac{V^{\prime}}{V}$

1. Solve for k first
2. Set up equal ratios

EX: Find the Area of base of the big cylinder
 Cross multiply to solve for missing dimensions

Chapter 8: Probabilities
Basic counting principle:

	With repetition (with replacement)	Without repetition (without replacement)	
Permutations (with order)	n^{r} EX: roll a die, twice: $(6)(6)=36$	- All n items: $n!$ EX: arrange 5 books: $5!=120$	$\begin{aligned} & \text { - } \frac{\mathrm{r} \text { out of } \mathrm{n} \text { items: }}{\boldsymbol{n} \boldsymbol{P r}=\boldsymbol{P} \boldsymbol{P} \boldsymbol{n}} \\ & =\frac{\boldsymbol{n}!}{(\boldsymbol{n}-\boldsymbol{r})!} \\ & \text { Or } \quad \begin{array}{l} \mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots \\ \mathrm{r} \text { times } \end{array} \end{aligned}$ EX: Give 3 awards to 7 students: $(7)(6)(5)=7 P 3=210$
Combination (without order)	$\frac{(n+r-1)!}{(n-1)!r!}$ EX: give 5 stickers in a class of 10 : 14! / (9!5!) =2002	$n C r=C_{r}^{n}=\frac{n!}{(n-r)!r!}$ EX: Choose 6 horses from 8 in total: $8 C 6=28$	
n is the total available items/choices r is the number of items/choices needed - Probability of an event: $\mathrm{P}(\mathrm{A})=\frac{\# \text { of desired outcomes }}{\text { total } \# \text { of outcomes }}$ Geometric probability: - 1D: $P($ target $)=\frac{\text { target length }}{\text { total length }}$ - 2D: $\mathrm{P}($ target $)=\frac{\text { target area }}{\text { total area }}$ - $3 \mathrm{D}: \mathrm{P}($ target $)=\frac{\text { target volume }}{\text { total volume }}$ A intersection B: $(A \cap B)$ is the event when A and B both occur. A union B: $(A \cup B)$ is the event when A or B occur. Compliment of $\mathrm{A}\left(\bar{A}\right.$ or $\left.A^{\prime}\right)$ is the event when anything except A occurs. $\begin{aligned} & P(A \text { and } B)=P(A) \times P(B) \\ & P(A \text { or } B)=P(A)+P(B) \end{aligned}$			EX: What is the probability of hitting the $\begin{aligned} \text { black? } \\ \begin{aligned} & \mathrm{P}(\mathrm{~B})=\underset{\mathrm{A}_{\text {Bcircle }}-\mathrm{A}_{\text {scircle }}}{\mathrm{A}_{\text {square }}} \\ &=\frac{\pi R^{2}-\pi r^{2}}{\mathrm{~s}^{2}} \\ &=\frac{\pi(3)^{2}-}{6^{2}} \pi(2)^{2} \\ &=9 \pi-4 \pi \\ & 36 \\ &=\frac{5 \pi}{36}=0.436 \end{aligned} \end{aligned}$

Chapter 6: Areas and volumes of solids			
			Area: $\times / \div 100$ each time Volume: $\times / \div 1000$ each time
Shape	A_{L} (unit ${ }^{2}$)	$\mathrm{A}_{\text {T }}$ (unit 2)	VOLUME (unit ${ }^{3}$)
Cube	$4 \mathrm{w}^{2}$	$6 \mathrm{w}^{2}$	w^{3}
Prism	$\mathrm{P}_{\mathrm{b}} \mathrm{h}$	$\mathrm{P}_{\mathrm{b}} \mathrm{h}+2 \mathrm{~A}_{\mathrm{b}}$	$\mathrm{A}_{\mathrm{b}} \mathrm{h}$
Cylinder	$2 \pi \mathrm{rh}$	$2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2}$	$\pi \mathrm{r}^{2} h$
Pyramid	$\frac{P_{b} S}{2}$	$\frac{P_{b} s}{2}+\mathrm{A}_{\mathrm{b}}$	$A_{b} \mathrm{~h}$
	$\frac{2}{\text { ars }}$		$\frac{3}{4 r^{2} \mathrm{~h}}$
Cone	$\pi \mathrm{rs}$	$\pi \mathrm{rs}+\pi \mathrm{r}^{2}$	$\frac{\pi r^{2} \mathrm{~h}}{3}$
Sphere		$\mathrm{A}_{\text {TOT }}=4 \pi \mathrm{r}^{2}$	$4 \pi r^{3}$
			$\overline{3}$
Hemisphere	$2 \pi r^{2}$	If base is included	$\frac{2 \pi r^{3}}{3}$

P_{b} : Perimeter of base; A_{b} : area of base; r : radius; s : slant height; h : height
EX: Find the total surface area and volume of this solid
$A_{T}=A_{\text {Lcoone }}+A_{\text {Lcylinder }}+A_{\text {Lhemisphere }}$ $=\pi r \mathrm{~s}+2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2}$ $=\pi(3)(5)+2 \pi(3)(8)+2 \pi(3)^{2}$ $=15 \pi+48 \pi+18 \pi$ $=81 \pi \mathrm{~cm}^{2}$ or $254.47 \mathrm{~cm}^{2}$
$\mathrm{V}=\mathrm{V}_{\text {cone }}+\mathrm{V}_{\text {cyliner }}+\mathrm{V}_{\text {hemisphere }}$
$=\frac{\pi r^{2} h}{3}+\pi r^{2} \mathrm{~h}+\frac{2 \pi r^{3}}{3}$ $=\frac{\pi(3)^{2}(4)}{3}+\pi(3)^{2}(8) \quad+\frac{2 \pi(3)^{3}}{3}$
$=12 \pi+72 \pi+18 \pi$
$=102 \pi \mathrm{~cm}^{3}$ or $320.44 \mathrm{~cm}^{3}$

Chapter 9: Statistics

Type of survey:
CENSUS: whole population; POLL: small sample; STUDY: Experts in topic Type of variable/data: 1-QUALITATIVE (quality/non numerical); or
2-QUANTITATIVE(numerical): Discrete (Integers); or Continuous (Real \#s)
Sampling Methods: 1-Random; 2-Systematic;
3- Cluster: randomly choosing some clusters and surveying them whole
4- Stratified: all proportions (\%) of the populations are represented FAIRLY
EX: from a school of 1200 students a sample of 180 is chosen. How many girls from grade 8 should be in the sample?

$$
\frac{240}{1200}=\frac{x}{180} \quad \text { therefore } \mathrm{x}=36
$$

	Girls	Boys
Grade 7	360	345
Grade 8	240	255

Measures of central tendency:
Mode(Mo): value with the highest frequency Median(Md): value at the center of an ordered list $\operatorname{Mean}(\bar{x})$: average of all values of data
EX: Mo = [100,110[;
Md = the tenth class: [110,120[;

Height	Freq.	Midpoint	Total height
$[100,110[$	8	105	$8(105)=840$
$[110,120[$	2	115	$2(115)=230$
$[120,130[$	7	125	$7(125)=875$
$[130,140[$	2	135	$2(135)=270$
Total	19		2215

Measures of position:
Quartiles: Q1, Q2, Q3 divide the ordered list of data into 4 groups containing the same number of data in each. The Q2 is the median, we find it first. Measures of dispersion:
Range: $\mathrm{R}=\mathrm{X}_{\text {max }}-\mathrm{X}_{\text {min }}$
Interquartile range: $\quad I=Q 3-Q 1$
Tables and diagrams:
$\begin{array}{lll}\text { 1. Bar graph 2. Pie chart } & \text { 3. Broken line graph 4. Histograms }\end{array}$
5. Box and Whiskers
plot.
EX:

